Performance of the cold powered diodes and diode leads in the main magnets of the LHC

نویسنده

  • G P Willering
چکیده

During quench tests in 2011 variations in resistance of an order of magnitude were found in the diode by-pass circuit of the main LHC magnets. An investigation campaign was started to understand the source, the occurrence and the impact of the high resistances. Many tests were performed offline in the SM18 test facility with a focus on the contact resistance of the diode to heat sink contact and the diode wafer temperature. In 2014 the performance of the diodes and diode leads of the main dipole bypass systems in the LHC was assessed during a high current qualification test. In the test a current cycle similar to a magnet circuit discharge from 11 kA with a time constant of 100 s was performed. Resistances of up to 600 μΩ have been found in the diode leads at intermediate current, but in general the high resistances decrease at higher current levels and no sign of overheating of diodes has been seen and the bypass circuit passed the test. In this report the performance of the diodes and in particular the contact resistances in the diode leads are analysed with available data acquired over more than 10 years from acceptance test until the main dipole training campaign in the LHC in 2015.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering

To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...

متن کامل

Performance Improvement of Field Effect Diodes (FED) for Nanotechnology

One of the main problems of field effect diode (FED) is the increasing of its turn-off current as the channel length decreases. Thus, in this paper, a new structure is presented which decreases the injection of extra carriers to the channel and also increases the control of the gate over the channel by reducing the portion of channel shared with the source and drain regions and without the need...

متن کامل

Effects of the Spacer Length on the High-Frequency Nanoscale Field Effect Diode performance

The performance of nanoscale Field Effect Diodes as a function of the spacer length between two gates is investigated. Our numerical results show that the Ion/Ioff ratio which is a significant parameter in digital application can be varied from 101 to 104 for S-FED as the spacer length between two gates increases whereas this ratio is approximately constant for M-FED. The high-frequency perform...

متن کامل

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics PROTECTION OF THE SUPERCONDUCTING CORRECTOR MAGNETS FOR THE LHC

In the LHC about 6500 superconducting corrector magnets will be powered either in stand-alone mode or in electrical circuits of up to 154 magnets. Single corrector magnets are designed to be self-protected in case of a quench. The protection scheme of magnets powered in series depends on the energy stored in the magnet and on the number of magnets in the circuit. A quench is detected by measuri...

متن کامل

High Step-Up Interleaved DC/DC Converter Using VM Cell for PV Applications

This work proposes a high step-up interleaved dc/dc topology utilizing a VM (voltage multiplier) cell suitable for PV applications. The VM cells D/C (Diode/Cap.) are cascaded among the phases to approach a high voltage gain. Besides, the voltage converting ratio of the presented structure can be improved by extending the VM cells and it also leads to drop in the normalized voltage stress throug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015